MATER SUPPLY

MISSISSIPPI STATE DEPARTMENT OF HEALTH 104 JUN 16 PM 12: 5! BUREAU OF PUBLIC WATER SUPPLY CCR CERTIFICATION CALENDAR YEAR 2013 Harmony Water Association, inc.

Public Water Supply Name

0120005 0120016 0120018 0120028

List PWS ID #s for all Community Water Systems included in this CCR

The Federal Safe Drinking Water Act (SDWA) requires each Community public water system to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. You must mail, fax or ema

email a copy of the CCR and Certification to MSDH. Please check all boxes that apply.	
Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other	ier)
Advertisement in local paper (attach copy of advertisement) On water bills (attach copy of bill) Email message (MUST Email the message to the address below) Other	
Date(s) customers were informed: 6 /12/201,4 / / , / /	
CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other dimethods used	rect delivery
Date Mailed/Distributed://	
CCR was distributed by Email (MUST Email MSDH a copy) As a URL (Provide URL As an attachment As text within the body of the email message	
· · · · · · · · · · · · · · · · · · ·	
CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)	
Name of Newspaper: The Clarke County Tribune	
Date Published: 6 / 12 2014	
CCR was posted in public places. (Attach list of locations) Date Posted: / /	
CCR was posted on a publicly accessible internet site at the following address (DIRECT URL RE	<u>:QUIRED</u>):
CERTIFICATION I hereby certify that the 2013 Consumer Confidence Report (CCR) has been distributed to the custo public water system in the form and manner identified above and that I used distribution methods the SDWA. I further certify that the information included in this CCR is true and correct and is contained the water quality monitoring data provided to the public water system officials by the Missi Department of Health, Bureau of Public Water Supply. **Name/Title (President, Mayor, Owner, etc.)* **Date** Date**	allowed by

Deliver or send via U.S. Postal Service: Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215

> May be faxed to: (601)576-7800

May be emailed to: Melanie. Yanklowski@msdh.state.ms.us

Annual Drinking Water Quality Report 2014 AUG -4 AM 9: 32 Harmony Water Association, Inc.

July, 2014

CORRECTED COPY # 0120016 - 0120018

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request.

We're pleased to report that our drinking water meets all federal and state requirements.

If you have any questions about this report or concerning your water utility, please contact Daniel Dearman at 601-776-2593 or 118 Long Blvd. Quitman. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the third Monday of every month at 5:00 PM at the Harmony Water Association office, and our annual meeting is held the third Monday of October. You will receive a notice of location and time.

Harmony Water Association routinely monitors for 154 constituents in your drinking water according to federal and state laws. This table shows the results of our monitoring for the period of January 1st to December 31 2013. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level - The concentration of a contaminant which, if exceeded, triggers water treatment or other requirements which a water system must follow. Treatment Technique (TT)- A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

PWS # 120018 Elwood - Lower Wilcox Aquifer

CODDECTED CCD

Lower susceptibility to contamination

CORKE	CIEDU	<u> </u>	Lowe	r susceptibi	my to come	шшан	UII					
	TEST RESULTS											
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination				
Inorganic (Contamin	ants										
10. Barium	N	2011*	.010512	No Range	Ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits				
14. Copper	N	2011*	0.1	0	Ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

17. Lead 19. Nitrate(as Nitrogen 20. Nitrite(as	N N	2011*	1	0	Ppb	0	AL=15	C
Nitrogen 20. Nitrite(as	N	2013					PAD=13	Corrosion of household plumbing systems, erosion of natural deposits
		2010	0.17	No Range	ppm	1	1	Runoff from fertilizer use: leaching from septic tanks, sewage: erosion of natural deposits
Nitrogen)	N	2013	0.18	No Range	Ppm	10	10	Runoff from fertilizer use: leaching from septic tanks, sewage: erosion of natural deposits
Disinfection B	y Proc	lucts						
73. TTHM [Total trihalomethanes]	N	2011*	1.29	No Range	Ppb	0	80	By-product of drinking water chlorination
81. HAA5	N	2011*	2.0	No Range	Ppb	0	60	By-product of drinking water chlorination
Chlorine (asCl2)	N	2013	0.50	0.40 to 0.60	Ppm	4	4	Water Additives; used to control microbes

^{*}Most Recent Sample. No Sample Required 2013

PWS # 120016-#2 #3 #4 - Sandy Basin & Hwy 514 Wells - Lower Wilcox Aquifer

CORRECTED CCR

Lower susceptibility to contamination

COMMECT	ED CCI	<u> </u>	J.J.	ower susception	ity to containin	auon		
				TEST R	ESULTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Inorganic C	ontamin	ants						
10. Barium #2 #3 #4	N	2011* 2011* 2011*	.010377 .0085 .0084	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper # 4	N	2011*	0.2 0.2 0.1	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride #2 #3 #4	N	2011* 2011* 2011*	.1 .1 .1	0	ppm	4	. 4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead #4	N	2011*	2 2 2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits

19. Nitrate(as Nitrogen	N	2013	0.09	0.06-0.09	Ppm	1	1	Runoff from fertilizer use: leaching from
							·	septic tanks, sewage: erosion of natural deposits
20. Nitrite(as Nitrogen)	N	2013	0.11	No Range	Ppm	10	10	Runoff from fertilizer use: leaching from septic tanks, sewage: erosion of natural deposits
Disinfectant	By Pro	duct						
73. TTHM (Total Trihalomethanes)	N	2011*	1.29	No Range	ppb	0	80	By-product of drinking water chlorination
81. HAA5	N	2011*	2.0	No Range	ppb	0	60	By-product of drinking water chlorination
Chlorine (asCl2)	N	2013	0.50	0.30 to 0.60	ppm	4	4	Water Additives; used to control microbes

^{*}Most Recent Sample. No Sample Required 2013

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Harmony Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at . The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

Some People may be more vulnerable to contaminants in drinking water than the general population. Immuno compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from Safe Drinking Water Hotline (800-426-4791).

We at Harmony Water Association work hard to provide quality water at every tap. We ask that all customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

I - A PERSUPPL 2014 JUN 16 PM 12: 5!

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request.

We're pleased to report that our drinking water meets all federal and state requirements.

If you have any questions about this report or concerning your water utility, please contact Daniel Dearman at 601-776-2593 or 118 Long Blvd. Quitman. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the third Monday of every month at 5:00 PM at the Harmony Water Association office, and our annual meeting is held the third Monday of October. You will receive a notice of location and time.

Harmony Water Association routinely monitors for 154 constituents in your drinking water according to federal and state laws. This table shows the results of our monitoring for the period of January 1st to December 31 2013. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions.

Detter understand these terms we've provided the following definitions.

Maximum Contaminant Level – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLOs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal – The "Goal" (MCLO) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLOs allow for a margin of safety.

Action Level – The concentration of a contaminant which, if exceeded, triggers water treatment or other requirements which a water system must follow. Treatment Technique (TT) – A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

PWS # 120018 Elwood - Lower Wilcox Aquifer

		******	Lower susceptibility to contamination							
				TEST R	ESULTS					
aminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or	Unit Measurement	MCLG	MCL			

Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or	Unit Measurement	MCLG	MCL	Likely Source Contamination
				# of Samples Exceeding MCL/ACL				
Inorganic C	ontamin	ants				1		<u></u>
10. Barium	N	2011*	.010512	No Range	Ppm	2	2	Discharge of di wastes; dischar metal refineries erosion of natu deposits
14. Copper	N	2011*	0.1	0	Ppm	1.3	AL=1.3	Corrosion of he plumbing syste erosion of nature deposits; leachi wood preservat
16. Fluoride	N	2011*	.135	0	Ppm	4	4	Erosion of natu deposits: water which promote: teeth: discharge fertilizer and al- factories
17. Lead	N	2011*	I	0	Ppb	0	AL=15	Corrosion of he plumbing system erosion of natural deposits
Disinfection	By Prod	ucts						
73. TTHM [Total trihalomethanes]	N	2011*	1.29	No Range	Ppb	0	80	By-product of d water chlorinati
81. HAA5	N	2011*	2.0	No Range	Ppb	0	60	By-product of d water chlorinati
Chlorine (asCl2)	N	2013	0.50	0.40 to 0.60	Ppm	4	4	Water Additives to control micro

*Most Recent Sample. No Sample Required 2013

alos

				TEST R	ESULTS	_		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Sour Contaminati
Inorganic Co	ontamin	ants						Discharge o
10. Barium	N	2011*	.01443	No Range	ppm	2		wastes; disc metal refine erosion of n deposits
14. Copper	N	2011*	0.1	0	ppm	1.3	AL=1.3	Corrosion of plumbing sy erosion of n deposits; le wood prese
16. Fluoride	N	2011*	0.1	0	ppm	4.	4	deposits; we which prom teeth; disch fertilizer an factories
17. Lead	N	2011*	1	0	ppb	0	AL=15	Corrosion of plumbing s erosion of t deposits
Disinfectant	By Pro	duct						15 1.
73. TTHM (Total Trihalomethanes)	N	2012*	4	No Range	ppb	0	80	water chlor
81. HAA5	N	2012*	1.0	No Range	ppb	0	60	water chlor
Chlorine (asCl2)	N	2013	0.40	0.30 to 0.50	ppm	4	4	to control
Volatil	e Organ	ic Conta	minan	ts				
76. Xylenes	N	2012*	0.555	No Range	ppb	10	10	Discharge petroleum discharge chemical f

^{*}Most Recent Sample. No Sample Required 2013

IMPORTANT INFORMATION MONITORING REQUIREMENTS PSW # 120028
We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. For the sample period 06/30/2013 we did not monitor for Volatile

meets health standards. For the sample period 06/30/2013 we did not monitor for Volatile Organic Compounds (VOCs) and therefore cannot be sure of the quality of our drinking water during that time. We have since taken the required samples and results show we are meeting drinking water standards.

PWS # 120016-#2 #3 #4 - Sandy Basin & Hwy 514 Wells - Lower Wilcox Aquifer

Lower susceptibility to contamination TEST RESULTS Range of Detects or # of Samples Exceeding MCL/ACL Likely So Contamir MCL MCLG Date Collected Level Detected Contaminant Measurement **Inorganic Contaminants** 2 Discharge No Range ppm .010377 2011* 2011* 10. Barium #2 wastes; d metal ref .0084 erosion o deposits Corrosio 1.3 ppm 0.2 2011* 14. Copper # 4 plumbing erosion c 0.1 deposits; wood pro Erosion ppm 2011* 2011* 2011* 16. Fluoride #2 deposits: which pr teeth; dir fertilizer .1 AL=15 Corrosic 2011* 0 ppb 2 2 2 17. Lead #4 erosion deposits

73. TTHM (Total Trihalomethanes)	N	2011*	1.29	No Range	ppb	0	80 By-prod water ch
81. HAA5	N	2011*	2.0	No Range	ppb	0	60 By-prod water ch
Chlorine (asCl2)	N	2013	0.50	0.30 to 0.60	ppm	4	4 Water A to contr

*Most Recent Sample. No Sample Required 2013

PWS # 120005 Harmony Well #2 Sparta Sand Aquifer Moderate susceptibility to contamination Harmony Well #3 Lower Wilcox Aquifer

				TEST	RESULTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely So Contamin
Inorganic C	ontamin	ants						D'-1
10. Barium #3	N	2011*	.0063	No Range	ppm	2	2	Discharge discharge refineries deposits
14. Copper	N	2011*	0.1	0	ppm	13	AL=1.3	Corrosion plumbing natural de from woo
16. Fluoride #3 #2	N	2011*	.205	0	ppm	4	4	Erosion of water add promotes discharge aluminum
17. Lead	N	2011*	1	0	ppb	0	AL=15	Corrosion plumbing natural de
Disinfectan	t By Pro	ducts		<u> </u>				
73. TTHM [Total	N	2011*	1.29	None	ppb	0	80	By-produ chlorinat
trihalomethanes] 81. HAA5	N	2011*	2	No Range	ppb	0	60	By-produ chlorinat
Chlorine(asCl2)	N	2013	0.40	0.30 to 0.60	ppm	4	4	Water Address of the control of
Volatile O	rganic C	ontamin	ants					
76. Xylenes #3	N	2013	× 1.14	No Range	ppb	10	10	Discharg factories chemica

*Most Recent Sample. No Sample Required 2013

IMPORTANT INFORMATION MONITORING REQUIREMENTS PSW # 120005

We are required to monitor your drinking water for specific contaminants on a regula basis. Results of regular monitoring are an indicator of whether or not our drinking wate meets health standards. For the sample period 06/30/2013 we did not monitor for Volatile Organic Compounds (VOCs) and therefore cannot be sure of the quality of our drinking water during that time. We have since taken the required samples and results show w

are meeting drinking water standards. All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man ma These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, includ bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of condoes not necessarily indicate that the water poses a health risk. More information about contaminants and potential health can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children drinking water is primarily from materials and components associated with service lines and home plumbing. Harmony \ Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in p components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flu your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take t minimize exposure is available from the Safe Drinking water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if years the sample of have your water tested.

Some People may be more vulnerable to contaminants in drinking water than the general population. Immuno comprom persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people v HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. Thes should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to risk of infection by cryptosporidium and other microbiological contaminants are available from Safe Drinking Water Ho

We at Harmony Water Association work hard to provide quality water at every tap. We ask that all customers help us pr

· WALLE SUPPL

PROOF OF PUBLICATION 2014 JUN 16 PM 2: 5!

STATE OF MISSISSIPPI COUNTY OF CLARKE

Invo	ice	##	

Before me, the undersigned authority in and for said county of Clarke, legal clerk of The Clarke County Tribune, a newspaper published in the City of Quitman, County of Clarke, Mississippi, being duly sworn says that the notice, a copy of which is hereto attached, was published in said newspaper as follows, to-wit:

6/12 20 14 Dated Dated The Clarke County Tribune Baxley Dated 20 Dated 0 Sworn to and subscribed before me, the said Notary Public as aforesaid, do certify that the newspaper containing said notice that the newspaper containing said notice that the copy here.

NOTARY PUBLIC

NOTARY PUBLIC**

NOT Printer's Fee: \$_ Proof of Pub: \$_ TOTAL:

061090405 SERVICE/ADDRES		SERVICE TO 07/16 ORTH	RETURN THIS STUB WITH F HARMONY WATER A P.O. BOX 342 • QUITMAN, M (601) 776-2893	SSOC. 8 39355-9342	PRESORTED FIRST CLASS MAIL US POSTAGE PAID PERAIT NO. 2 QUITMAN, MS
CURRENT	PREVIOUS	USEO	PAY NET AMOUNT	DUE DATE	PAY GROSS AMOUNT AFTER
2321	1746	575	ON OR BEFORE DUE DATE	08/15/2014	DUE DATE GROSS AMOURT
CHA	IGE FOR SERVICE	S	48.25	4,83	53.08
			CORRECTED CO		(≥) m
WAT NET DUE		18.25 18.25	RETU	RN SERVICE REQUE	STED CEIVED
SAVE THI	s >>	4.83	061090405	SHOP	WATER
GROSS DU	E >> :	53.08	MARK MATHIS	4	₹ ER
			3863 HIGHWAN QUITMAN MS 3 39355		SUPPLY

Ryan

Continued from Page 4

Continued from P

ANNUAL DRINKING WATER QUALITY REPORT JUNE 2014 HARMONY WATER ASSOCIATION, INC.

We're very pleased to provide you with this year. The study shows the measure of the must of quality (Report. We want to leep you informed about this excellent water and as exprises we have delivered to you down the start of grant and state is exert. This study is show the must of grant and state is exert. This study is show the must of grant and state is exert. This study is show the must of grant and state is exert. This study is show the must be grant and state is exert. This study is show the must of grant and state is exert in the state of grant and state is exert in the state of an analyse state of an analyse profit of grant and state is exert in the state of a state of a state of an analyse you can be desired. As stated in sport of the state of an analyse state of the state of an analyse state of the state of an analyse state of an analyse state of an analyse state of the state of an analyse state of an an

In 77

Di. 73. (Tot trib:

			PWS#1	Low	od - Lower er suscepti T RESULT	bility to c	Aquifer contamination		1				se - Lower WJ		Löwer sweepthilt		ur onlidren's future		
obliminant	Violat Ya	os Date Cobe	Lores Descrip		Unite 1 Milesonia les		MCL	Likely Source of Contamination	Contaminate	Visitiser Y/N	Date Collected	Lerri Described	Range of Defets or # of Sampler Expending ACL/ACL	Unit Meditarios	MCLO	MCL	Likely Source of Contamination		
norganie (Contan	inants		MCDMC			1		Inorganic Co	ontami	18 ti (s								
). Berium	1 *	2011*	.01031	No Range	Ppes		2	2 Discharge of drilling waster; discharge from metal refineries;	10 turner		2011*	0144	No Range	ppm	2	1	Discharge of drilling wastes, discharge from fortal reflorries cropped of rathers		
I. Copper	T×	2011*	.01	0	Ppm %	-	3 AE-L	I plumbling systems	14 Coppes	В	2011*	0.1	0	bban .	13	AL+13	Corresion of acquished primiting systems, creating of natural		
- Flooride	N	2011*	135	. 0	Ppon	٠,	1	deposits (eaching from wood preservatives Erosion of cascusi	16. Fluoride	₩.	2011*	0.1	0	bbse	++		deposits, loaching for second preservatives Brosion of palants deposits, water saddi-		
								deposits, west additive which promotes strong teeth discharge from fertilizer and discreasing	17 Used	<u>L.</u>	2011*						which promotes pron- torch, discharge from fertilizer and alumines factories		
Lead	N	2011*		•	Ppb	T	ALets	plumbing systems, crosson of natural		<u> </u>		<u> '</u>		ppb	Ů	AL»)5	Correston of household plumbing systems, erosion of steams steposits		
isinfection	a By Pr	oducis						f deposits	Distrifectant	By Pro	2012	+ 4	No Rango						
TTHM otal halomethanes) . HAA3	N	2011*	129	No Range	Ppb Ppb	0	10	By-product of drinking water chlorinasies By-product of drinking	Tribalomellumes)				no examp	pob		\$0	By-product of drieking water chlorosinon		
ioreta (asCl2)	м	2013	0.50	0.40 to 0.60	Pyen	+		water chieroparces Water Additives; used	SI: HAAS Chiscine (sectio)	N N	2012*	10	No Range 0 30 to 0 50	ррб	1	60	By-product of drinking water chloritation		
	*Meu R		Na Sauple Re		Well #2 Spa		L	(o ccox of stocked)	Voiatile				0.0000	pott	<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		Water Additives; used to control autoroxes		
			Moder	rte suscépti	hell #2 Spa bility to con Lower Wilc	taminati	000		76. Xyleoes	א	2012*	9.555	No Range	tèp	10	19	Discharge from petroleum factories discharge from chemical factories		
Noticani	TEST RESULTS TOTAL Control Date Control Dente Control Den										*Multi-transfusite, to hand topiced 185. IMPORTANT INFORMATION MONITORING REQUIREMENTS FSW # 120086 We are required to monitor your dracking water for specific contaminants on a regular basis. Results of regular monetoring at ea mindicator of whether or not our dracking water meet health standards for the sample period 60/200/31 we did not monitor for Voltaile								
Barium #3	N N	2011*	01	io Range	bber bber	12	6.90 11.56	barge of drilling season harge from restal office provious of natural leafer	Org Wat	ganio Co ier durin; meeting	mpounds (g that time drinking	VOCs) as . We hav water stat	nd therefore e since take udards.	cannot be A the regu	sure of the qua lired samples a	llty of our dri nd results sho	nling		
Tooride #3	N.	2011*	205		pota .			sbing systems; erosion of ral deposits; leaching a bood preservatives for of natural deposits; e additive which	PWS# 100014-dt es as . Sanely Basin & Hwy 514 Wells - Liwer Wifeer Aquilar Lawer materialisty to consummation TEST RESULTS								and the second		
							pron disci	on of natural deposits, t additive which seems strong reeth, targe from fertilizer and upont factories	Contaminant	Viciation Y/N	Date CoSecue	Lavel Detreibe	Range of Detects or 8 of Samples Encoding	Usia Mesoranoses	MCLÓ	MGL	Likely Source of Contamination		
zad .		2011*		٠	bap	"	AL-15 Com	otion of boasehold bing systems, crosses of this deposits	Inorganic Co	ntamin	ants	لسيا	MCL/ACL	L	<u> 1l</u>				
infectant)									10: Baritan #2	N	2011*	010377	No Range	ppms	2	2	Discharge of criffing		
TIOS s) fomethanes] GAA3	N	2011*		Note to Range	lby.	9	chior	reduct of drinking water matters	84 14: Concer # 4	н -	2011*)0\$4	-0	ooto			wartes; discharge from thetas refineries; erosies of natural deposits		
in(sCt)	Ж	2013	0.40 0	30 to 0,60	Met	-	4 Wase	r Additives; med to bt microbes			,	03 02 01		yen.	"	2000	Corressor of household philipping systems: brosson of natural deposits, leaching from		
									16. Flumbe #2 #3 #4	н	2011* 201(*		9	(Asar)	11		wood preservatives Brosice of baneal deposits, water address		
latile Orga Vines #3		11933 HA		o Rutge	pp	10	10 Disc Bus-	targe from perceleus nes, discharge from scal factories			2011*	i					which precioles mong teeth; discharge from ferulizer and aluminum factories		
Y	ve are re	quired to t	nonitor yo	ar drinking	water for s	pecific on	NTS PSW # 120005	les	17 Leed 84	н	20114	2 2	g.	tep			Corrosion of household plumbing systems erosson of eathrei		
basis. Results of regular monitoring use an indicator of whether or not our drinking water meets health standards. For the sample period 60/50/2013 we did not monitor for Volatile Organic Compounds (VOCs) and therefore cannot be sure of the quality of our drinking									Disinfectant By Product										
	rater duri	ng that tim	c. We hav	e since take	n the requi	ue or the red sampl	e quality of our drinki fer and results show	ng He	73 TTHM (Tobal Tribalotterbanes) 81 HAAS	N N	2011*	129	No Rango	pph	9		By-product of draking water colorination		
									Chlorise (a)C(2)	N	2013		No Range 0 30 to 0 60	ppti ppti	1	- 4	By-product of drinking water chloribation Waltr Additives; used		
e la Sulta								100		Most Rece	er Sanaple, Ma						to council talcooker		
horaga kagyir		V040228112	47. 3 4Cu151"		2000 OH 3789 V	erconduces.			8449 E S S S S S S S S S S S S S S S S S S										